Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Nat Commun ; 15(1): 2102, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453901

RESUMO

Nicotinamide adenine dinucleotide (NAD)+ serves as a crucial coenzyme in numerous essential biological reactions, and its cellular availability relies on the activity of the nicotinamide phosphoribosyltransferase (NAMPT)-catalyzed salvage pathway. Here we show that treatment with saturated fatty acids activates the NAD+ salvage pathway in hypothalamic astrocytes. Furthermore, inhibition of this pathway mitigates hypothalamic inflammation and attenuates the development of obesity in male mice fed a high-fat diet (HFD). Mechanistically, CD38 functions downstream of the NAD+ salvage pathway in hypothalamic astrocytes burdened with excess fat. The activation of the astrocytic NAMPT-NAD+-CD38 axis in response to fat overload induces proinflammatory responses in the hypothalamus. It also leads to aberrantly activated basal Ca2+ signals and compromised Ca2+ responses to metabolic hormones such as insulin, leptin, and glucagon-like peptide 1, ultimately resulting in dysfunctional hypothalamic astrocytes. Our findings highlight the significant contribution of the hypothalamic astrocytic NAD+ salvage pathway, along with its downstream CD38, to HFD-induced obesity.


Assuntos
Gorduras na Dieta , NAD , Masculino , Camundongos , Animais , NAD/metabolismo , Gorduras na Dieta/metabolismo , Astrócitos/metabolismo , Obesidade/metabolismo , Hipotálamo/metabolismo , Citocinas/metabolismo
2.
Int J Womens Health ; 15: 1757-1769, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38020943

RESUMO

Background: Bochdalek hernia (BH) of congenital diaphragm hernia is infrequently seen in adults. Strangulation of the diaphragm hernia has been recognized as a severe complication. Among several factors, pregnancy is an important cause of diaphragm hernia's deterioration. However, nausea, vomiting, and upper abdominal pain are often considered non-specific pregnancy-related symptoms. Case Presentation: We report a case of a 39-year-old (gravida II, para I) multigravida woman with a delayed diagnosis of strangulated herniated viscera complicating total gastric gangrene at 26+1 weeks' gestation. The preoperative diagnosis was confirmed by an X-ray examination and magnetic resonance imaging (MRI). After identifying the size and severity of the herniated contents through video-assisted thoracoscopy (VAT), we immediately converted to abdominal laparotomy. Antenatal corticosteroids were administered simultaneously with diagnosis to promote fetal maturity. The fetal condition was maintained well in the maternal uterus during the operation. Careful monitoring of the fetus and the mother's clinical conditions should be performed during expectant management to achieve delayed delivery after maternal surgical correction. Delivery was completed through cesarean delivery at 27+1 weeks of gestation. Conclusion: Despite the rarity of maternal Bochdalek hernias during pregnancy, early diagnosis and appropriate treatment via multidisciplinary care are essential for maternal and fetal outcomes.

3.
Nat Commun ; 14(1): 1994, 2023 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-37031230

RESUMO

Nicotinamide adenine dinucleotide (NAD+) is an essential cofactor of critical enzymes including protein deacetylase sirtuins/SIRTs and its levels in mammalian cells rely on the nicotinamide phosphoribosyltransferase (NAMPT)-mediated salvage pathway. Intracellular NAMPT (iNAMPT) is secreted and found in the blood as extracellular NAMPT (eNAMPT). In the liver, the iNAMPT-NAD+ axis oscillates in a circadian manner and regulates the cellular clockwork. Here we show that the hypothalamic NAD+ levels show a distinct circadian fluctuation with a nocturnal rise in lean mice. This rhythm is in phase with that of plasma eNAMPT levels but not with that of hypothalamic iNAMPT levels. Chemical and genetic blockade of eNAMPT profoundly inhibit the nighttime elevations in hypothalamic NAD+ levels as well as those in locomotor activity (LMA) and energy expenditure (EE). Conversely, elevation of plasma eNAMPT by NAMPT administration increases hypothalamic NAD+ levels and stimulates LMA and EE via the hypothalamic NAD+-SIRT-FOXO1-melanocortin pathway. Notably, obese animals display a markedly blunted circadian oscillation in blood eNAMPT-hypothalamic NAD+-FOXO1 axis as well as LMA and EE. Our findings indicate that the eNAMPT regulation of hypothalamic NAD+ biosynthesis underlies circadian physiology and that this system can be significantly disrupted by obesity.


Assuntos
Citocinas , NAD , Camundongos , Animais , NAD/metabolismo , Citocinas/metabolismo , Fígado/metabolismo , Metabolismo Energético , Ritmo Circadiano , Locomoção , Mamíferos/metabolismo
4.
J Microbiol Biotechnol ; 33(3): 348-355, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36746918

RESUMO

Epifluorescence microscopy with image analysis was evaluated as a biofilm quantification method (i.e., quantification of surface area colonized by biofilms), in comparison with crystal violet (CV) staining. We performed different experiments to generate multispecies biofilms with natural and artificial bacterial assemblages. First, four species were inoculated daily in 16 different sequences to form biofilms (surface colonization, 0.1%-56.6%). Second, a 9-species assemblage was allowed to form biofilms under 10 acylase treatment episodes (33.8%-55.6%). The two methods comparably measured the quantitative variation in biofilms, exhibiting a strong positive relationship (R2 ≥ 0.7). Moreover, the two methods exhibited similar levels of variation coefficients. Finally, six synthetic and two natural consortia were allowed to form biofilms for 14 days, and their temporal dynamics were monitored. The two methods were comparable in quantifying four biofilms colonizing ≥18.7% (R2 ≥ 0.64), but not for the other biofilms colonizing ≤ 3.7% (R2 ≤ 0.25). In addition, the two methods exhibited comparable coefficients of variation in the four biofilms. Microscopy and CV staining comparably measured the quantitative variation of biofilms, exhibiting a strongly positive relationship, although microscopy cannot appropriately quantify the biofilms below the threshold colonization. Microscopy with image analysis is a promising approach for easily and rapidly estimating absolute quantity of multispecies biofilms.


Assuntos
Biofilmes , Microscopia , Bactérias
5.
Polymers (Basel) ; 14(23)2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36501677

RESUMO

Polyhydroxyalkanoate (PHA), with a long chain length and high poly(4-hydroxybutyric acid) (P4HB) ratio, can be used as a base polymer for eco-friendly and biodegradable adhesives owing to its high elasticity, elongation at break, flexibility, and processability; however, its molecular structures must be adjusted for adhesive applications. In this study, surface-modified cellulose nanofibers (CNFs) were used as a hydrophobic additive for the PHA-based adhesive. For the surface modification of CNFs, double silanization using tetraethyl orthosilicate (TEOS) and methyltrimethoxysilane (MTMS) was performed, and the thermal and structural properties were evaluated. The hydrophobicity of the TEOS- and MTMS-treated CNFs (TMCNFs) was confirmed by FT-IR and water contact angle analysis, with hydrophobic CNFs well dispersed in the PHA. The PHA-CNFs composite was prepared with TMCNFs, and its morphological analysis verified the good dispersion of TMCNFs in the PHA. The tensile strength of the composite was enhanced when 10% TMCNFs were added; however, the viscosity decreased as the TMCNFs acted as a thixotropic agent. Adding TMCNFs to PHA enhanced the flowability and infiltration ability of the PHA-TMCNFs-based adhesive, and an increase in the loss tangent (Tan δ) and adjustment of viscosity without reducing the adhesive strength was also observed. These changes in properties can improve the flowability and dispersibility of the PHA-TMCNFs adhesive on a rough adhesive surface at low stress. Thus, it is expected that double-silanized CNFs effectively improve their interfacial adhesion in PHA and the adhesive properties of the PHA-CNFs composites, which can be utilized for more suitable adhesive applications.

6.
Int J Mol Sci ; 23(22)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36430156

RESUMO

The mRNA destabilizing factor tristetraprolin (TTP) functions as a tumor suppressor by down-regulating cancer-associated genes. TTP expression is significantly reduced in various cancers, which contributes to cancer processes. Enforced expression of TTP impairs tumorigenesis and abolishes maintenance of the malignant state, emphasizing the need to identify a TTP inducer in cancer cells. To search for novel candidate agents for inducing TTP in cancer cells, we screened a library containing 1019 natural compounds using MCF-7 breast cancer cells transfected with a reporter vector containing the TTP promoter upstream of the luciferase gene. We identified one molecule, of which the enantiomers are betamethasone 21-phosphate (BTM-21-P) and dexamethasone 21-phosphate (BTM-21-P), as a potent inducer of TTP in cancer cells. We confirmed that BTM-21-P, DXM-21-P, and dexamethasone (DXM) induced the expression of TTP in MDA-MB-231 cells in a glucocorticoid receptor (GR)-dependent manner. To identify potential pathways linking BTM-21-P and DXM-21-P to TTP induction, we performed an RNA sequencing-based transcriptome analysis of MDA-MB-231 cells at 3 h after treatment with these compounds. A heat map analysis of FPKM expression showed a similar expression pattern between cells treated with the two compounds. The KEGG pathway analysis results revealed that the upregulated DEGs were strongly associated with several pathways, including the Hippo signaling pathway, PI3K-Akt signaling pathway, FOXO signaling pathway, NF-κB signaling pathway, and p53 signaling pathway. Inhibition of the FOXO pathway using a FOXO1 inhibitor blocked the effects of BTM-21-P and DXM-21-P on the induction of TTP in MDA-MB-231 cells. We found that DXM enhanced the binding of FOXO1 to the TTP promoter in a GR-dependent manner. In conclusion, we identified a natural compound of which the enantiomers are DXM-21-P and BTM-21-P as a potent inducer of TTP in breast cancer cells. We also present new insights into the role of FOXO1 in the DXM-21-P- and BTM-21-P-induced expression of TTP in cancer cells.


Assuntos
Neoplasias , Tristetraprolina , Tristetraprolina/genética , Glucocorticoides/farmacologia , Fosfatidilinositol 3-Quinases , Receptores de Glucocorticoides/genética
7.
Sci Total Environ ; 838(Pt 1): 156002, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35588829

RESUMO

Response of microbial community to nutrient availability in anaerobic digestion (AD) remains elusive. Prokaryotic communities in AD batch cultures with 0, 1, 3, 5, 7, 11, 15, 20, and 25 g/L peptone were monitored using massive parallel sequencing and quantitative PCR over a 34-day experimental period. Methane production displayed a hump-shaped response to the nutrient gradient (peaking at 15 g/L peptone). Moreover, total and acetoclastic methanogens showed hump-shaped responses (both peaking at 11 g/L peptone). However, prokaryotic population increased with nutrient concentration (linear regression, R2 = 0.86) while diversity decreased (R2 = 0.94), and ordination analysis showed a gradual succession of community structure along the first axis. Network analysis revealed that extent of interspecific interactions (e.g., edge number and clustering coefficient) exhibited a hump-shaped response. The combined results indicate that abundant species became more dominated with increasing nutrient, which can result in a gain or loss of interspecific interaction within the community. Network module analysis showed that one module dominated the network at each nutrient level (comprising 41%-65% of the nodes), indicating that AD community formed a core microbial guild. The most abundant phylotypes, Macellibacteroides and Butyricicoccaceae, were consistently negative with acetoclastic methanogens in the dominant modules. Their predominance at ≥15 g/L peptone can explain the hump-shaped responses of methanogenesis and methanogens. Collectively, methanogenesis and microbial network exhibited hump-shaped responses, although microbial community exhibited monotonic responses. Therefore, nutrient availability can determine the methanogenesis through regulating the relative fitness of methanogens within the community.


Assuntos
Reatores Biológicos , Metano , Anaerobiose , Nutrientes , Peptonas
8.
J Appl Microbiol ; 132(1): 459-469, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34176204

RESUMO

AIMS: Dispersal effects on biofilms have not been adequately studied despite their strong potential impacts on biofilm development. We investigated the effects of dispersal on biofilm metacommunity. METHODS AND RESULTS: A bacterial consortium was allowed to form biofilms on 12 glass beads attached to disposable plates (compartmentalized or not), and biofilms were scrutinized on days 5, 10 and 15 using quantitative PCR and MiSeq sequencing. Biofilm population density was lesser by 2 orders of magnitude on day 5 when dispersal was allowed (p < 0.05). Then, the population rapidly increased by 4.4 orders with dispersal (p < 0.05) but did not change without dispersal. Community analyses revealed that dispersal increased the species diversity at all sampling times (p < 0.05). Dispersal affected the community structure and increased the homogeneity of local communities (p < 0.05). Distance-decay analysis showed that dispersal reduced the dissimilarity among local communities at all distance levels. Furthermore, dispersal reduced the variability of diversity, population and community structure. Network analysis revealed that dispersal increased the clustering coefficient, network density and connectivity. CONCLUSIONS: Dispersal increased the species diversity, population and interaction and reduced the variability of the diversity, population and structure among local communities. SIGNIFICANCE AND IMPACT OF STUDY: Our results suggest that dispersal can induce the niche complementarity and mass effects.


Assuntos
Biodiversidade , Ecossistema , Bactérias/genética , Biofilmes
9.
Eur J Pharmacol ; 911: 174416, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34606836

RESUMO

Age-related cartilage loss is worsened by the limited regenerative capacity of chondrocytes. The role of cell-based therapies using mesenchymal stem cells is gaining interest. Adipose tissue-derived mesenchymal stem cells (ADSCs) are an attractive source to generate the optimal number of chondrocytes required to repair a cartilage defect and regenerate hyaline articular cartilage. Here, we report an outstanding technique to prepare chondrocytes for cartilage repair using canine ADSCs. We hypothesized that external electrical fields promote prechondrogenic condensation without requiring genetic modifications or exogenous factors. We analyzed the effect of electrical stimulation (ES) on the differentiation of ADSC micromass into chondrocytes. Highly compact structures were formed within 3 days of ES of canine ADSC micromass. The expression of type I collagen gene was abolished in these cells compared with that in control micromass cultures and monolayer cultures. We further found that ES enhanced the production of proteoglycan, a highly produced extracellular matrix component in chondrocytes. Additionally, single-cell RNA sequencing analysis showed that canine ADSC micromass undergoing ES developed a prechondrogenic cell aggregation, suggesting their metabolic conversion, biogenesis, and calcium ion change. Collectively, our findings demonstrate the capacity of ES to drive the chondrogenesis of ADSCs in the absence of exogenous factors and confirm its commercial potential as a budget-friendly therapy for the repair of cartilage defects.


Assuntos
Cartilagem Articular
10.
Biomed Res Int ; 2021: 6690704, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34527741

RESUMO

Natural killer (NK) cells are key immune cells engaged in fighting infection and malignant transformation. In this study, we found that canine NK cell-derived exosomes (NK-exosomes) separated from activated cytotoxic NK cell supernatants express specific markers including CD63, CD81, Alix, HSP70, TSG101, Perforin 1, and Granzyme B. We examined the antitumor effects of NK-exosomes in an experimental murine mammary tumor model using REM134 canine mammary carcinoma cell line. We observed changes in tumor size, tumor initiation, progression, and recurrence-related markers in the control, tumor group, and NK-exosome-treated tumor group. We found that the tumor size in the NK-exosome-treated tumor group decreased compared with that of the tumor group in the REM134-driven tumorigenic mouse model. We observed significant changes including the expression of tumorigenesis-related markers, such as B cell-specific Moloney murine leukemia virus insertion site 1 (Bmi-1), vascular endothelial growth factor (VEGF), matrix metallopeptidase-3 (MMP-3), interleukin-1ß (IL-1ß), IL-6, tumor necrosis factor-α (TNF-α), multidrug resistance protein (MDR), tumor suppressor protein p53 (p53), proliferating cell nuclear antigen (PCNA), and the apoptotic markers, B cell lymphoma-2 associated X (Bax) and B cell lymphoma-extra large (Bcl-xL) belonging to the Bcl-2 family, in the tumor group compared with those in the control group. The expression of CD133, a potent cancer stem cell marker, was significantly higher than that of the control. By contrast, the NK-exosome-treated tumor group exhibited a significant reduction in Bmi-1, MMP-3, IL-1ß, IL-6, TNF-α, Bax, Bcl-xL, and PCNA expression compared with that in the tumor group. Furthermore, the expression of CD133, which mediates tumorigenesis, was significantly decreased in the NK-exosome-treated tumor group compared with that in the tumor group. These findings indicate that canine NK-exosomes represent a promising therapeutic tool against canine solid tumors, including mammary carcinoma.


Assuntos
Exossomos/imunologia , Células Matadoras Naturais/imunologia , Neoplasias Mamárias Animais/imunologia , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Biomarcadores Tumorais , Neoplasias da Mama/imunologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/terapia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Cães , Exossomos/metabolismo , Exossomos/fisiologia , Feminino , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/transplante , Neoplasias Mamárias Animais/metabolismo , Neoplasias Mamárias Animais/terapia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Cultura Primária de Células , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Carbohydr Polym ; 270: 118375, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34364619

RESUMO

In this study, lignin-carbohydrate complexes (LCCs) were isolated from biomass (raw and pretreated) to investigate the structural changes in biomass pretreated by Fenton oxidation and hydrothermal treatment, and their effect on enzymatic hydrolysis. The composition and structure of the LCCs fractions were investigated via carbohydrate analysis, XRD, FT-IR, and 2D HSQC NMR. The biomass degradation rate of yellow poplar and larch during Fenton oxidation and hydrothermal treatment was approximately 30%. Most of the hemicellulose was degraded during pretreatment, while xylan remained in the yellow poplar, and galactan, mannan, and xylan remained in the larch. The fractional yield of glucan-rich LCC (LCC1) in the yellow poplar (raw and pretreated biomass) was high, while that of glucomannan-rich LCC (LCC3) in larch was higher than the yield yellow poplar. Phenyl glycoside, γ-ester, and benzyl ether linkages were observed in the LCCs of yellow poplar, while phenyl glycoside and γ-ester were detected in those of larch. Following pretreatment, the frequencies of ß-ß', ß-5, and γ-ester in the LCCs of larch were found to be higher than in those of yellow poplar. The efficiencies of enzymatic hydrolysis for the pretreated yellow poplar and larch were 93.53% and 26.23%, respectively. These finding indicated that the ß-ß', ß-5, and γ-ester linkages included in the pretreated biomass affected the efficiency of enzymatic hydrolysis.


Assuntos
Biomassa , Carboidratos/química , Peróxido de Hidrogênio/química , Ferro/química , Lignina/química , Hidrólise , Larix/química , Larix/enzimologia , Liriodendron/química , Liriodendron/enzimologia , Espectroscopia de Ressonância Magnética/métodos , Mananas/química , Oxirredução , Polissacarídeos/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Temperatura , Difração de Raios X/métodos , Xilanos/química
12.
Nanomaterials (Basel) ; 11(6)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34208072

RESUMO

Polyhydroxyalkanoate (PHA) is a biodegradable plastic with great potential for tackling plastic waste and marine pollution issues, but its commercial applications have been limited due to its poor processability. In this study, surface-modified cellulose nanocrystals were used to improve the mechanical properties of PHA composites produced via a melt-extrusion process. Double silanization was conducted to obtain hydrophobically treated CNC-based fillers, using tetraethyl orthosilicate (TEOS) and methyltrimethoxysilane (MTMS). The morphology, particle size distributions, and surface characteristics of the silanized CNCs and their compatibility with a PHA polymer matrix differed by the organosiloxane treatment and drying method. It was confirmed that the double silanized CNCs had hydrophobic surface characteristics and narrow particle size distributions, and thereby showed excellent dispersibility in a PHA matrix. Adding hydrophobically treated CNCs to form a PHA composite, the elongation at break of the PHA composites was improved up to 301%, with little reduction of Young's modulus, compared to pure PHA. Seemingly, the double silanized CNCs added played a similar role to a nucleation agent in the PHA composite. It is expected that such high ductility can improve the mechanical properties of PHA composites, making them more suitable for commercial applications.

13.
Microb Ecol ; 81(3): 657-672, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33094372

RESUMO

Plants may influence different aspects of the belowground microorganisms, including abundance, distribution, and interaction, in wetlands. Microbial communities were scrutinized in a 4-year-old restored wetland ecosystem with 5 distinct sites: a bare-soil site (10 local patches) and sites dominated by Miscanthus, Phragmites, Typha, and Zizania (20 patches per site). Ordination analysis revealed that plant-induced attributes (e.g., organic matter and total carbon and nitrogen) could explain the total environmental variance. Community comparisons showed that all groups (Bacteria, Fungi, Protista, and Metazoa) differed in community structure among the 5 sites (P < 0.05). Comparisons between the community and environmental ordination plots revealed that community structural variation among the sites correlated with the environmental change across all groups (R2 ≥ 0.61). This indicates that all groups were primarily influenced by plant detritus. In addition, correlation networks markedly varied in topology and composition among the sites across all groups. There was a strong coupling between the metacommunity and correlation network for both Bacteria and Fungi (R2 ≥ 0.58), indicating that the plants determined the spatial covariation patterns of microbial populations. Multi-group networks and group synchrony results revealed that Bacteria, Fungi, and Protista were synchronized with each other (R2 ≥ 0.52) as the key founders of the microbial systems, while Metazoa participated in the system only under Miscanthus. Our findings concluded that the plants shaped the communities by controlling the abundance and interaction of their populations.


Assuntos
Microbiota , Áreas Alagadas , Fungos/genética , Plantas , Solo , Microbiologia do Solo
14.
Microb Ecol ; 81(2): 549-552, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32948906

RESUMO

Interspecies interactions have a profound influence on spatial distribution of coexisting microbial species. We explored whether spatial variance of species distribution (SVSD) predicts the degree of interspecies interactions within a microbial metacommunity. Simulations were used to determine the relationships from random, lake, soil, and biofilm metacommunity datasets (1,000 times). All of the bacterial datasets showed a negative correlation between the habitat breadth (inverse to SVSD) and the numbers of total, positive, and negative interspecies interactions (P < 0.05); the only exception was the relationship between habitat breadth and negative interactions in the biofilm dataset. The random dataset had no significant relationships (P > 0.05). We repeated the simulations to determine the degree of correlation and reproducibility (100 times). Habitat breadth was negatively correlated with the total and positive interactions in all of the real datasets (P < 0.05), and the negative relationships persisted across repetitions. Despite variability in the slope of total interactions, the slope values of positive interactions were similar for the real datasets (- 19.9, - 19.2, and - 25.8 for lake, soil, and biofilm, respectively). In conclusion, our results demonstrate the patterns of species interaction-distribution and show that interspecies interactions are positively correlated with the SVSD.


Assuntos
Ecossistema , Interações Microbianas , Microbiota , Bactérias , Biofilmes , Lagos/microbiologia , Reprodutibilidade dos Testes , Microbiologia do Solo
15.
Am J Chin Med ; 48(5): 1091-1102, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32668967

RESUMO

Black ginseng (BG), which is ginseng that has been steamed and dried nine times, and its main protopanaxatriol-type ginsenosides Rg4, Rg6, Rh4, and Rg2 have been reported to exhibit various forms of biological activity, including antiseptic, antidiabetic, wound-healing, immune-stimulatory, and anti-oxidant activity. The aim of the this study was to examine the effects of [Formula: see text] (a rare protopanaxatriol-type ginsenoside fraction; Rg2, Rg4, Rg6, Rh1, and Rh4) on heme oxygenase-1 (HO-1) induction and on the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX-)2 in lipopolysaccharide (LPS)-activated human pulmonary artery endothelial cells (HPAECs). [Formula: see text] was tested to determine its effect on iNOS protein expression and inflammatory markers (interleukin [IL]-1[Formula: see text] and tumor necrosis factor [TNF]-[Formula: see text] in the lung tissue of LPS-treated mice. The results showed that [Formula: see text] induced the expression of HO-1, reduced LPS-activated NF-[Formula: see text]B-luciferase activity, and inhibited iNOS/NO and COX-2/PGE2, which contributed to the inhibition of STAT-1 phosphorylation. In particular, [Formula: see text] induced the translocation of Nrf2 from the cytosol to the nucleus by increasing Nrf2-ARE activity and decreased IL-1[Formula: see text] production in LPS-activated HPAECs. This reduction in iNOS/NO expression due to [Formula: see text] was reversed by siHO-1 RNA transfection. In LPS-treated mice, [Formula: see text] significantly reduced lung tissue iNOS protein levels and TNF-[Formula: see text] levels in the bronchoalveolar lavage fluid. In conclusion, these findings indicate that [Formula: see text] has a critical anti-inflammatory effect due to its ability to regulate iNOS via the inhibition of p-STAT-1 and NF-[Formula: see text]B, and thus it may be suitable for the treatment of inflammatory disease.


Assuntos
Expressão Gênica/efeitos dos fármacos , Ginsenosídeos/farmacologia , Inflamação/genética , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Panax/química , Fator de Transcrição STAT1/metabolismo , Animais , Anti-Inflamatórios , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Ginsenosídeos/isolamento & purificação , Heme Oxigenase-1/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Inflamação/tratamento farmacológico , Mediadores da Inflamação/metabolismo , Interleucina-1beta/metabolismo , Luciferases/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Fosforilação/efeitos dos fármacos , Fitoterapia
16.
Environ Res ; 183: 109230, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32058145

RESUMO

Particulate matter (PM), the collection of all liquid and solid particles suspended in air, includes both organic and inorganic particles, many of which are health-hazards. PM particles with a diameter equal to or less than 2.5 µm (PM2.5) is a form of air pollutant that causes significant lung damage when inhaled. Maslinic acid (MA) prevents oxidative stress and pro-inflammatory cytokine generation, but there is little information available regarding its role in PM-induced lung injury. Therefore, the purpose of this study was to determine the protective activity of MA against PM2.5-induced lung injury. The mice were divided into seven groups (n = 10 each): a mock control group, an MA control (0.8 mg/kg mouse body weight) group, an opted PM2.5 produced from diesel (10 mg/kg mouse body weight) group, a diesel PM2.5+MA (0.2, 0.4, 0.6, and 0.8 mg/kg mouse body weight) groups. Mice were treated with MA via tail-vein injection 30 min after the intratracheal instillation of a diesel PM2.5. Changes in the wet/dry weight ratio of the lung tissue, total protein/total cell and lymphocyte counts, inflammatory cytokines in the bronchoalveolar lavage fluid (BALF), vascular permeability, and histology were monitored in diesel PM2.5-treated mice. The results showed that MA reduced pathological lung injury, the wet/dry weight ratio of the lung tissue, and hyperpermeability caused by diesel PM2.5. MA also inhibited diesel PM2.5-induced myeloperoxidase (MPO) activity in the lung tissue, decreased the levels of diesel PM2.5-induced inflammatory cytokines, including tumor necrosis factor (TNF)-α and interleukin (IL)-1ß, reduced nitric oxide (NO) and total protein in the BALF, and effectively attenuated diesel PM2.5-induced increases in the number of lymphocytes in the BALF. In addition, MA increased the protein phosphorylation of the mammalian target of rapamycin (mTOR) and dramatically suppressed diesel PM2.5-stimulated expression of toll-like receptor 4 (TLR4), MyD88, and the autophagy-related proteins LC3 II and Beclin 1. In conclusion, these findings indicate that MA has a critical anti-inflammatory effect due to its ability to regulate both the TLR4-MyD88 and mTOR-autophagy pathways and may thus be a potential therapeutic agent against diesel PM2.5-induced lung injury.


Assuntos
Autofagia , Lesão Pulmonar , Material Particulado , Transdução de Sinais , Serina-Treonina Quinases TOR , Receptor 4 Toll-Like , Triterpenos , Animais , Líquido da Lavagem Broncoalveolar , Citocinas , Pulmão/efeitos dos fármacos , Camundongos , Material Particulado/toxicidade , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/efeitos dos fármacos , Receptor 4 Toll-Like/efeitos dos fármacos , Triterpenos/farmacologia
17.
Microb Ecol ; 79(1): 84-97, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31250076

RESUMO

Quorum quenching (QQ) has received attention for the control of biofilms, e.g., biofilms that cause biofouling in membrane bioreactors (MBRs). Despite the efficacy of QQ on biofouling, it is elusive how QQ influences biofilm formation on membranes. A pilot-scale QQ-MBR and non-QQ-MBR were identically operated for 4 days and 8 days to destructively sample the membranes. QQ prolonged the membrane filterability by 43% with no harmful influence on MBR performance. qPCR showed no effect of QQ on microbial density during either of these time periods. Community comparisons revealed that QQ influenced the bacterial and fungal community structures, and the fungal structure corresponded with the bacterial structure. Metacommunity and spatial analyses showed that QQ induced structural variation rather than compositional variation of bacteria and fungi. Moreover, QQ considerably enhanced the bacterial dispersal across membrane during the early development. As the dispersal enhancement by QQ counteracted the ecological drift, it eliminated the distance-decay relationship, reflecting a neutral theory archetype of metacommunity. Network analyses showed that QQ substantially reduced the amount and magnitude of interactions, e.g., competition and cooperation, for bacteria and fungi, and weakened their network structures, irrespective of time. Additionally, QQ suppressed the growth of specific microbial species (e.g., Acinetobacter), abundant and widespread at the early stage. These findings suggest that QQ influenced the community dynamics at the regional and local levels, correspondingly the ecological selection and dispersal processes, during the biofilm development.


Assuntos
Biofilmes , Reatores Biológicos/microbiologia , Fungos/fisiologia , Percepção de Quorum , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Fenômenos Fisiológicos Bacterianos , Fungos/classificação , Fungos/genética , Fungos/crescimento & desenvolvimento , Membranas Artificiais
18.
Microb Ecol ; 79(4): 801-814, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31705158

RESUMO

Freshwater planktonic communities comprise a tremendous diversity of microorganisms. This study investigated the distribution patterns of microbial kingdoms (bacteria, fungi, protists, and microbial metazoans) within a lake ecosystem. Water samples were collected from 50 sites along the shoreline in a lake during an early eutrophication period, and MiSeq sequencing was performed with different marker genes. Metacommunity analyses revealed a bimodal occupancy-frequency distribution and a Clementsian gradient persisting throughout all microbial kingdoms, suggesting similar regional processes in all kingdoms. Variation partitioning revealed that environmental characteristics, macrophyte/macroinvertebrate composition, space coordinates, and distance-based Moran's eigenvector maps (dbMEM) together could explain up to 29% of the community variances in microbial kingdoms. Kingdom synchrony results showed strong couplings between kingdoms (R2 ≥ 0.31), except between Fungi and Metazoa (R2 = 0.09). Another variation partitioning revealed that microbial kingdoms could well explain their community variances up to 73%. Interestingly, the kingdom Protista was best synchronized with the other kingdoms. A correlation network showed that positive associations between kingdoms outnumbered the negative ones and that the kingdom Protista acted as a hub among kingdoms. Module analysis showed that network modules included multi-kingdom associations that were prevalent. Our findings suggest that protists coordinate community assembly and distribution of other kingdoms, and inter-kingdom interactions are a key determinant in shaping their community structures in a freshwater lake.


Assuntos
Lagos/microbiologia , Microbiota , Animais , Bactérias/isolamento & purificação , Fungos/isolamento & purificação , Lagos/parasitologia , República da Coreia , Análise Espacial
19.
J Asian Nat Prod Res ; 22(4): 386-396, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30821482

RESUMO

The aim of this study was to investigate the effects of sulforaphane (SFN) on lipopolysaccharide (LPS)-induced liver failure, and to elucidate underlying mechanisms. SFN, a natural isothiocyanate present in cruciferous vegetables such as broccoli and cabbage, is effective in preventing carcinogenesis, diabetes, and inflammatory responses. Mice were treated intravenously with SFN at 12 h after LPS treatment. LPS significantly increased mortality, serum levels of liver damage markers, and inflammatory cytokines, and toll-like receptor 4 (TLR4) protein expression, which were reduced by SFN. Our results suggest that SFN protects against LPS-induced liver damage, indicating its potential to treat liver diseases.


Assuntos
Isotiocianatos , Lipopolissacarídeos , Animais , Fígado , Camundongos , Estrutura Molecular , Sulfóxidos
20.
Biochem Biophys Res Commun ; 521(2): 389-394, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31668919

RESUMO

The enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatases 3 (PFKFB3) catalyzes the first committed rate-limiting step of glycolysis and is upregulated in cancer cells. The mechanism of PFKFB3 expression upregulation in cancer cells has not been fully elucidated. The PFKFB3 3'-UTR is reported to contain AU-rich elements (AREs) that are important for regulating PFKFB3 mRNA stability. However, the mechanisms by which PFKFB3 mRNA stability is determined by its 3'-UTR are not well known. We demonstrated that tristetraprolin (TTP), an ARE-binding protein, has a critical function regulating PFKFB3 mRNA stability. Our results showed that PFKFB3 mRNA contains three AREs in the 3'-UTR. TTP bound to the 3rd ARE and enhanced the decay of PFKFB3 mRNA. Overexpression of TTP decreased PFKFB3 expression and ATP levels but increased GSH level in cancer cells. Overexpression of PFKFB3 cDNA without the 3'-UTR rescued ATP level and GSH level in TTP-overexpressing cells. Our results suggested that TTP post-transcriptionally downregulated PFKFB3 expression and that overexpression of TTP may contribute to suppression of glycolysis and energy production of cancer cells in part by downregulating PFKFB3 expression.


Assuntos
Regulação para Baixo , Neoplasias/patologia , Fosfofrutoquinase-2/metabolismo , Tristetraprolina/fisiologia , Elementos Ricos em Adenilato e Uridilato , Glicólise , Humanos , Neoplasias/metabolismo , Fosfofrutoquinase-2/genética , Estabilidade de RNA , RNA Mensageiro , Transcrição Gênica , Tristetraprolina/metabolismo , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...